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It is shown that in the coordinate system T; -1 /(1/v)(8v/3p)T = K the lines of constant vis~
cosity for liguids should be reectilinear,

According to the widely-accepted views of Frenkel' [1, 2], the microstructure of liquids a long way
from the critical point is characterized by relatively infrequent jumps of the molecules from one set of tem~
porary equilibrium positions to another, and thermal vibrations around these positions between the jumps.
For the case of nonspherical molecules, rotations and rotational oscillations of the particles are added to
this. In spite of its simple nature, this picture gives a clear representation of the true microstructure of
liquids. The decisive quantity characterizing the microstate of liguids is the so-called "settled" life-time
of the particles 7, i.e., according to Frenkel', the average time lag between jumps of the molecules.

If the time during which an external force acts on the liguid (or the time during which this force
varies) is much shorter than 7, the behavior of the liquid follows the macroscopic laws of the theory of
elasticity: elastic deformations (tension and compression) arise in the liguid, and also elasfic shear strains,
involving tangential stresses [3]. Furthermore, when the time of action of the force is very short and the
force itself great, the strength of the liquid may be disrupted in a manner more typical of crystals, by way
of breaks and cracks [4]. Only when the time of action of the force or the period of its variation become
much greater than 7 does the property of fluidity, normal for liquids, appear.

Long before Frenkel', Maxwell used the general principles of elastic theory to develop a theory of vis-
cosity requiring no assumptions as to the microstructure and state of aggregation of the material [5}. For
an ideal solid, the stress arising under the influence of external forces is expressed by the equation

F =Gy. 1)
For an ideal liquid, this relationship takes the form
& _ 1 g @)
dt u
Let us differentiate (1) with respect to t:
v _ L dF 3)
dt G ar
Hence the total deformation of a viscoelastic substanee is, according to Maxwell,
dy 1 p, L df )
dt o G dt

From the point of view of the foregoing considerations regarding the liquid state of matter, Eq.
(4) reflects the behavior of liquids under the influence of external forces for cases in which the period of
action of these forces (or the period during which they are varying) is short enough to reveal the elastic
forces, and yet long enough for fluidity effects to appear. It follows from Eq. (4) that, in the case under
consideration, when deformation ceases (dv/dt = 0), the stress F does not vanish instantaneously, as in
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ideal liquid, nor does it become equal to a constant quantity, as in the case of an ideal solid; rather it varies
with time in accordance with the equation

A dF gy, A 6)
G dt i
The solution of this equation is
g
F=Fe". (6)
The exponential reduction in stress (relaxation) for a viscoelastic body is characterized by the time
M during which the stress falls by a factor of e:
B
Ty = —— . (7
g
No experimental determination of the coefficient of dynamic viscosity from Eq. (7) can as yet be made,
in particular, because of the small value of the time 7y;. Frenkel' and Predvoditelev used the Maxwell
equation to construct theories of the viscosity of a liquid [5, 6]. The Frenkel' equation gives a reasonable
qualitative representation of the temperature dependence of the viscosity of liquids, but fails to provide
quantitative agreement with experiment, This is possibly because Frenkel' directly identifies the settled
life-time of the particles T with the Maxwell relaxation time 7y;. Justifying the identification of 7 with
7M., Frenkel' writes:

"The relaxation time. . . may naturally be identified with the time during which the liquid particles
remain settled in one particular equilibrium position. . . . The vanishing of the elastic stresses in the ma-~
terial when the macroscopic deformation suddenly stops at some constant value should clearly be attributed
to redistribution of the particles, by passing from certain positions into neighboring positions, which re-
quires a times of the order of their settled life" [5, p. 347]. This hypothesis is not supported closely enough
by experiment, Thus, for example, Panchenkov indicates that "all the formulas proposed by Frenkel' for
the temperature dependence of the viscosity of a liquid only give the right order of magnitude for the vis-
cosity, not its true numerical value" [6, p. 53]. Panchenkov also points out (6] that there are clear indica-
tions "as to the inapplicability of the Stokes' formula for defining the coefficient of friction experienced by
one particular particle of the liquid by virtue of the surrounding particles in terms of the coefficient of
macroscopic viscosity of the liquid" [6, p. 50]. The Stokes' formula was, in fact, derived for the conditions
of motion of a macroscopic particle in a continuous medium, i.e., strictly speaking, the dimensions of the
particle experiencing the friction should be much greater than those of the particles in the surrounding
medium. Hence the formula derived by Frenkel' for the viscosity on the basis of the identification of the
coefficients of macroscopic and microscopic viscosity, cannot — and indeed does not — give adequately ac-
curate results. Thus the Frenkel' equations cannot be used for the direct calculation of viscosities, nor for
the analysis of experimental data.

Panchenkov suggests that the inaccuracy of the Frenkel' equations is related to the lack of experi-
mental confirmation of the Maxwell equation; in his opinion this equation is quite inapplicable to a liquid.
The direct verification of this equation would require a logarithmic relationship between F and t to be ob-
tained over a period of time very short for low-viscosity liquids, which would present extreme experimen-
tal difficulties. However, relaxation phenomena in liquids over short periods of time have been fairly ex-
tensively studied, both theoretically and experimentally, in connection with the electromagnetic constants
of the molecules. Thus, for example, Debye [7] made a theoretical study of the problem as to the time re-
quired by dipolar molecules to return from the oriented to the disordered state after the removal of an
electric field. The electric field Fg acts on a dipolar molecule, tending to rotate it into the direction of
the field; the rotational moment thus arising is

M= —pyFsinb. (8)

Under the influence of this moment, the molecule will rotate with a constant angular velocity, experiencing
a resistance due to its interaction with surrounding molecules. The moment of the resistive forces, also

equal to M, will be given by the equation ‘
4o

M=7—, 9

g 0 )

where ¢ is the constant of internal friction,
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Using the Maxwell —Boltzman distribution, and equating the moments created by the electric field and
by the forces of internal friction, Debye then obtains an expression for the distribution function of the orien-
tations of the molecules, the variable part of which takes the form

2kT

ply=c ©. (10)

After the removal of the field Fe, the molecules start returning to their original disordered state,
and the function ¢(t) falls by a factor of e in a time ¢ /2kT. In contrast to 7y we call this the Debye re-
laxation time:

To= "5 (11)

where T is the absolute temperature.

The Maxwell relaxation time (the fall in the mechanical stress after the removal of the external force)
and the Debye relaxation time (the return of the molecules to the disordered state after the removal of an
external electric field) reflect differing relaxation processes which are nevertheless similar in their physi-
cal nature. We may therefore expect that these quantities will be, even if not equal, at least proportional
to one another, i.e.,

Ty =0T

The coefficient of internal friction in (11) was regarded as constant by Debye, constituting an averaged
characteristic of interactions at the microscopic level. The macroscopic viscosity in the Maxwell equation
constitutes the total result of the microscopic interactions. There are thus good grounds for considering
that the coefficient of dynamic viscosity is uniquely determined by the microscopic coefficient of internal
friction ¢ (and conversely):

Thus Eq. (7) may be written as follows

B ¢ folw)
Nl = ¢, 10N 12
¢ T mr T ur (12)
or
L
fol) 2T
The shear modulus G in Eq. (12) is, according to elasticity theory,
E
ST 13
6= 2(1-+pp) (13)
Since the Poisson coefficient yp remains constant with the limits of applicability of Hooke's law, we have
G=cFE. (14)
The Young's modulus may be expressed in the following manner
E=3(1—2pp)K =c;K, (15)
and in furn [8]
. ! (16)
o _02.) '
v ( op /7
Substituting (15) and (16) into (14), we obtain
1 : 1
G.—__—[,‘?C3 T—_(—,-a-—gT ‘:;:__C“lI'l_(_a‘_T- . (17)
v ' adpir 4 ( ap )T
1f we then put (17) into (12) we obtain
B, K (18)
T
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Fig. 1. Lines of u = const from the experimental
data of [9, 10], plotted in coordinates of T (°K) and
K (bar) (the broken curve is the saturation line;
the figures on the lines give values of y, N -sec

/m?),

Equation (18) leads to a conclusion which is important in the analysis of experimental data, namely,
that in the coordinate system K, T the lines of constant viscosity should be straight lines.

We attempted to verify the foregoing conclusion for water, the viscosity of which has been studied
over a number of years in the Physical Laboratory of the All-Union Thermotechnical Institute. To this
end we took reliable experimental data relating to the viscosity of water [9, 10] and plotted lines of constant
viscosity (u = const) in the p, T diagram for pressures up to 1000 bar; for various values of p and T along
these lines we made a computer calculation of the quantity —1/(1/v)(9v/ 8p)T = K, using the international
system of equations of state for water [11].

Using these values, we plotted the dependence of K on T for various values of y = const. As seen in
Fig. 1, these relationships may to a fairly high degree of accuracy be approximated by straight lines, thus
confirming the foregoing conclusions, atall events as regards water. The scatter of the points relative
to the smoothing straight lines never exceeds 1% (with respect to viscosity), and this lies within the limits
of experimental error.

On the basis of the foregoing theoretical considerations we have thus established a fairly simple re-
lationship between the coefficient of dynamic viscosity and the thermal properties of liquids. This rela-
tionship may, in particular, be used for correlating data relating to the viscosity of liquids over a wide
range of parameters of state. Our analysis has shown that along the lines u = const the quantity K is pro-
portional to the pressure. It follows that the lines u = const will aiso be straight lines in coordinates (p,
T), giving a comparatively simple equation convenient for practical calculations between the viscosity co-
efficient and the experimentally measured parameters of state (p and T).

This -equation was proposed in a similar form in [11]. It should be noted that the equation describes
the viscosity of water not only in the liquid phase but also over a considerable range of supercritical param-
eters. '

NOTATION

is the relaxation time;

is the shear modulus;

is the dynamic viscosity;

is the dipole moment;

is the angle between the direction of the dipole moment and the field direction;
is the microscopic viscosity;

is the Boltzmann's constant;

is the temperature;

C1, Cy, C3, Gy, C;  are the constants;
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is Young's modulus;
is the bulk modulus;
is the specific volume;
is the pressure,
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